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Abstract. Double and multiple irreducible products of irreducible tensor operaton 
OrkJ(J) obeying special commutation relations arising from the properties of angular 
momentum operators are considered. It is shown that the double product can be expressed 
in terms of another set 0'" associated with a coupling coefficient E?I''Z) defined by 
[O'W x O ' k d i ~  = E ~ ~ ~ O O ' ~ ' .  An analytical expression has been derived for the coupling 
coefficient f: I *I) and its values are tabulated for k, and k, up to 3. It is proved that 
[Oe4 x O'k?']rk' = [Ori2' x O'x~']ii). Multiple irreducible products are also discussed, The 
coupling coefficients for triple products are tabulated for T,k, up to 6. Some important 
special cases of quadruple products are dealt with explicitly. Applications of the present 
results to high-order effects in spectroscopy are investigated. 

1. Introduction 

The theory of irreducible tensorial sets originated by Racah (see, e.g., [l]) is very 
useful in nuclear, atomic, molecular and solid state spectroscopies and has been greatly 
developed during the last decades (see, e.g., [2-4] and references therein). In particular, 
theoperatorequivalents[5-71 have proved tobeextremelyfruitfulfor theunderstanding 
ofthe magneticandoptical propertiesofdNand fNopen-shell ionsin crystalline materials 

There are some problems which require taking into account higher-order effects 
associated with a given interaction. One example is the higher-order exchange inter- 
action in the theory of high-temperature susceptibility of Heisenberg ferromagnets, 
whichisnotnegligibleformanysubstances[ll, 121. In themicroscopicspin-Hamiltonian 
theory used in EPR spectroscopy [9] as well as in NMR spectroscopy [13] and in the study 
of optical transitions [14-161, one needs to consider perturbations of second and higher 
orders, which give rise to the products of irreducible tensor operators. 

The present paper deals with irreducible products of irreducible tensor operators 
OCk:)(J) obeying special commutation relations arising from the properties of angular 
momentum operators and which are extensively used in the crystal field analysis and the 
spin-Hamiltonian formalism. After presenting basic definitions in section 2 we calculate 
the coupling coefficients and discuss their symmetry properties in sections 3 and 4 for 
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two and three (or more) irreducible tensorial sets. respectively. Section 5 deals with 
applications of the present results. 
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2. Basic definitions 

Aset of irreducible tensor operators Tik) ,  q = k ,  k - 1,. I . , - k ,  is defined by the com- 
mutation relations [ l ]  

where J z  and I ,  = Jx 5 iJy are the angular momentum operators. 
Buckmaster [7]. and later independently Smith and Thornley [SI, defined the irre- 

ducible tensor operators 0ik)(J) in sucha way that forq = k the following relation holds 
~ 7 1  

Of' = [(-l)k/Zkk!] [(2k)!]'"Jk,. (3) 
The operators 0ik) defined by (3) have been tabulated for all values of k up to k = 6 [7] 
and k = 8 [17, 181. A comprehensive discussion of Buckmaster and Smith-Thornley 
(BST) operators and other operators used in the crystal-field and EPR areas as well as 
their properties can be found in the review in [19], It should be mentioned that the 
operators most widely used in these areas, namely the extended Stevens (ES) operators 
[20, 211 are not of spherical but of tesseral type. Transformation relations between 
various tensor operators can be found in [ 191. 

The matrix elements of O(k) in (3) are given by [22] 

where the reduced matrix element is defined as 

(Jl/O'k'llJ) = (1/Zk)[(2J + k + 1)!/(2J - k)!]'!'. (5) 
The irreducible product of two tensorial sets Ab:>) and B;?) is defined, using the 3j- 

symbols, as follows [l]: 

When the two sets AIk)) and B(':) commute with each other, [B('z) x A"I)]$~)  differs 
from [Ac'l) x B(k2)]$*) by a factor (- l ) k ~ + k 2 - k ,  as follows from the properties of the 3j 
symbols. 

InthecasewhenA(kI) = 0 ( * 1 1  and B'kz) = 0(k2),thecouplingshowsmoreinteresting 
features owing to the non-commutation of the operator sets. First of all, the irreducible 
product can be expressed in terms of Oikl as follows: 

[O(Xd x O(k,)](k) 4 = E*l~~2)ow k 9 (7) 

where Ik, - k21 S k S k, + kl .  Since the coupling coefficient ~rl,~z) defined by (7) is 
independent of q (see section 3). we may rewrite equation (7) in the form 

(8) [O'k,' x O ( k z ) ] ( k )  = ,p")O'k). 
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3. Coupling of two irreducible tensorial sets 

It is useful for many purposes to know the numerical values of the coupling coefficient 
&f5.%) defined in (7).  One way to calculate these values is to use the explicit form of 
O f ) ,  to expand the left-hand side of (7) according to (6) and to apply repeatedly the 
commutation relations (1)  and (2 ) .  This method has been used previously by one of us 
[ S 2 5 ] .  Infact,equations(l) and(2) haveto beusedtoreducetheranksoftheoperators 
when k < k ,  + k,, and this reduction becomes possible when J .  J (=Jf + J,' + J:) 
oc?urs. Thus,if the coupling coefficient E?.'2)dependson J ,  it must exhibit theJ(J + 1)- 
dependence, where J(J + 1) is the eigenvalue of J . J .  Using this method, some coef- 
ficients for lower values of ki (i = 1 ,  2 )  have been calculated and applied to the spin- 
Hamiltonian theory of 3d4 and 3d6 ions [23-261. 

In this paper, a more general approach for calculating the required coupling coef- 
ficients is presented. This method is based on the application of the Wigner theorem in 
equation (4) to both sides of equation (7) .  Using (5) and the expression for the reduced 
matrix element (JllOckt) x O(k?)llJ) (see, e.g., [22]) ,  one obtains 

(2J + k ,  + 1)!(2J + k ,  + 1)!(2J - k ) !  
.x ( (2J - k1) ! (2J  - k,)!(2J + k + I)! (9) 

where{. . .}denotes the6j-symbols. Hence,it followsfrom(9) that &:l.*2)isindependent 
of q. However, it depends, in general, on the J-value, showing the J ( J  + 1)-dependence 
discussed above. The relation equivalent to (9) has been derived by Schwinger (see [2] ,  
p 267) and Judd (see [3] .  p 102), albeit in different operator notation. 

An important property of &;I.'?) follows from the symmetry properties of the 6j- 
symbols [27]; we obtain 

~ l 4 . k ~ )  = &f+ j ) ,  (10) 

This is to be compared with a similar expression for the irreducible tensorial sets 
and E('') of commuting tensor operators [l] 

(12) x E(kz)](k) = ( - l ) k i + b - k [ B ( b )  x A ( k d ] ( k )  

and with the corresponding expressions for the eigenstates of the total angular momen- 
t u m j = j ,  t j 2 [ 1 ]  

ljrj2jm) = ( - i p + i ? - J  lj ZIIP). . ' (13) 

Thedifference between thecoupling ofsetsofoperatorswhichcommute witheachother 
(12), discussed in detail in [ l ] ,  and that of the irreducible o erators 0ck~)(J) operators 
(11) is very evident. The related symmetry property of E~ I 2 in equation 10 IS useful 
since it enables us to reduce considerably the tables of the coefficients E?. 2). In table 1 
we list values of ~f1.'2' for k, and k2 = 1 . 2  and 3. These values have been numerically 
checked by a FORTRAN program. 

i ) '  
ck.!). 
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Another useful symmetry relationship can be obtained by interchanging k 2  and k in  
(9): 

&fiA) = A ( k z ,  k)&‘kt.kI k2 (14) 

where 

A(k2, k )  = [A(k ,  k2)I-l = (-l)k-k2(2k + 1)1/24k(U + kz + 1)!(2J - k) !  

X [(Zk, + 1)1/24k2(2J + k + 1)! (2J  - kz)!]-’. (15) 
It is easy to show that, when k = k l  + k ,  and k = k ,  + k z  - 1, $ 1 ~ 2 ’  is independent of 
J. In fact, we have, from (9), 

# ihd  k i + k i  = [ ( k ,  + k,)!/k,!k,!][(2k,)!(2k,)!/(2kl + 2kz)!]’lz (16) 

~‘~l, ’?) P 1 + k 2 - 1  = - [ (k j  t k2)!/(kj  - l)!(kz - 1)!]{[(2kj - 1)!(2k2 - l)!/(ZkI + 2k,)!] 

X (2kl t 2kz - 1))”’ (17) 
~rl.’~) = (-l)kz{(U - kj + k2)!(2J + kj + l ) ! k , !  

k - k z  

x [Z2’2(25 + kl - k2 + l ) !  ( k ,  - kz)!kz!(2J - k1)!]-’} 

X [(Zk, - 2k, + l ) ! (2kz) ! / (2k ,  t l)!ll” (18)  
E ~ , L ? : + ~  = (-l)ka{(2J + k l  + 1)!(2J + k ,  - k l  - l j ! (k l  + l)! 

X [4k2-1(21 + k1 + 2 - kZ)!(2J - k,)!(kZ - l j ! (k l  - k*)!]-’} 

X [(2kz - 1)!(2kl - 2k2 + 1)!(2k, - 2k2 + 3)/(2kl + 2)!]”2 (19) 

k l k .  (20) E ( k l . 0 )  6 
k 

We have assumed that k l  k ,  in the derivation of relations (18) and (19). 

4. Multiple products of irreducible tensorial sets 

We have shown in the precedingsection that x O(kz)](k) can be expressed in terms 
of 0‘” and is actually equal to [O“?’ X Ockl)](k)  because of the symmetry property of 
the coupling coefficient For three or more irreducible tensorial sets of degrees 
k , ,  k,, k3? . . , , k,, there exist more than one distinct coupling schemes. In a similar way 
to equation (8), we can express a multiple product of degree kin terms of O‘k) associated 
with a coupling coefficient, which depends. in general, on the coupling scheme. In other 
words, different coupling schemes produce, in general, different products. 

Let us introduce the following short-hand notation: 

{OfkJ x O ( k b ) }  [ O ( ’ n )  x O ( k b ’ ] ( n )  (21) 
n 

where n takes values from Ik, - kbl to k. + kb. There are three coupling schemes 
in the case of a triple product, namely [{0fkt) x O(k2)) x O‘k~) ] (k ) ,  
[{O(kz) x x O(kl) ] (k)  and [{O“l’ X O(k31} x O(k2)](k). For each of three schemes 
we may apply ( 8 )  repeatedly to obtain the respective coupling coefficients, denoted as 
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andn = Ik, - kzl,lkI - k21 + 1,. . ., k ,  + k,.Therearemorepossiblecouplingschemes 
in the case of quadruple products. Similarly, in thiscase we have explicitly, for example, 

[ [ O ( k d  x O ( k d ] ( " t )  x [o(ki) x O(kd](nd](k) = , l ( k ~ k ~ ) ( k ~ k d l ~ ( k )  k (24) 
"I"? 

where 

and the summation is over n ,  = Ikl - k,l to k l  + k2 and nz = Ik3 - k41 to k,  + k4. 
It is seen from (23) and (24) that the coupling coefficients of three or more sets are 

determined by &('1.~2), i.e. the coupling coefficients for the double sets. Table 2 lists the 
values of & ~ 1 k 2 ) ~ ~ I  for Zikj up to 6. These values have been numerically checked by a 
FORTRAN program. For quadruple products, we calculate & F k l k 2 ) ( k $ d ) 1  only for the case 
k l  = kz = k ,  = k4 = 1,  which is of direct importance for the microscopic spin-Ham- 
iltonian theory [26].  We obtain 

& p 1 1 ) 1  = 6[7 + 2 P ( J  + 1 ) 2 ]  

E2 1(11)(11)' = a+ l/V% - (2*/3)J(J + 1) - ( 1 / 3 f i ) [ 4 J ( J  + 1) - 1.51 
E3 [(11)(11)' = - ( 2 / v 3 )  (1 + v5) 

l(ll)(WJ = 2 f l / 3 5 ,  

E1 1(11)(11)' = - 1 / 2 a  + ( 6 / 3 ) J ( J  + 1 )  + [(6 + f i ) / 6 V % ] [ 4 J ( J  + 1) - 31 
(26) 

E4 

The results for &j/ l l ) ( ' I ) I ,  k = 2 and 4, have been calculated independently by Rudowicz 

It is worthwhile mentioning that there exist special cases where different coupling 
schemesleadtothesameirreducibleproduct.Then, thecouplingrelationmay bewritten 
as 

[=I. 

[o(ki) x O(k2) x . , , x O(kJ](k) = & l k i k 2 . . . k n 1 0 ( k ) ,  k (27) 

This applies to the following cases: 

(i) k = kl  + k2 + . . . + k,, 
(ii) k = 0 and k ,  = k ,  = k3 for the triple products and 
(iii) k = 0 and kl  = k ,  = k3 = k4for the quadruple products. 

Then, we obtain 
E I ~ ~ ~ ~ . . , ~ " ~  = [ ( k ,  + k ,  + . . . + k,)!/k, !kz !  . . . k,!] 

x [(2k,)!(2k2)! . . . (2kn)!/(2k,  + 2kz + . . . + 2k,)!]'!2 

k l  t k 2  t . .  . +k. 
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5. Applications 

Several interactions considered in nuclear, atomic, molecular and solid state spec- 
troscopies can be expressed in terms of irreducible tensor operators. Higher-order 
effects due to these interactions often play an important role. A typical example is the 
zero-field splitting (ZFS) in EPR spectroscopy of dN and F‘ ions in crystals. For d”’ ions, 
the ZFS arises from the second- and higher-order perturbation with respect to the spin- 
orbit interaction given within an LS term by 

3ew = U .  s = AO“)(L) . O q s )  (32) 

(33). 

as well as the electronic spin-spin coupling 

3ess = -p [ (L .  S ) *  + 8L f s - f L ( L  + I)S(S + I)] 

(see,e.g.,[26]). In~~~spectroscPpyofcrystalscontaininglanthanideions, higher-order 
effects of the hyperfine interaction RI. I and the quadrupole coupling C[2(J. + 
J . I  - gJ(J + 1 ) I ( I  + I)] produce a splitting similar to that of the ZFS in EPR [13]. In the 
case of ferromagnetics, the higher-order exchange interaction A,,($.  Siy with n > 1 is 
not negligible for the high-temperature susceptibility 111, 121. In dealing with these 
problems we often need to consider multiple products of scalar products such as 

. B ( k l ) )  (A(h?) . B(h2)). A recoupling procedure for this type of product has been 
considered by Fano and Racah [I], who derived the following relation: 

(.4(h1l.~(k1))(A(ki).B(h~))=~(-1)k1+k?-h[~(h,) x ~ ( k ? ) ] ( k ) . [ ~ ( k , )  ~ ~ ( h > l ] ( k )  (34) 
h 

where A‘”) and B(’i), i = 1 and 2, are irreducible tensor operators defined with the 
Condon-Shortley [28] phase convention ( A t 1  - z), which has been adopted by 
Buckmaster [7], by Smith and Thornley [6] as well as in this work. When the Fanc- 
Racah [l] phase convention ( A t )  - iz) is adopted, the phase factor ( - l ) k l t k 2 - h  must 
be omitted in (34). A generalization of equation (34) to multiple products and its 
graphical representation has been provided by Rudowicz [25]. Using equation (34) and 
the values of E ; , ’ )  ( k  = 0,1,2) listed in table 1, X -  (33) can be rewritten [25] as 

X,,  = -$pO”’(L) f 0 ‘ 2 ) ( S )  = gp (-l)~o$yL)O?;(s). (35) 
P 

A similar expression can be obtained for the hyperfine quadrupole interaction with C 
replacing - p  in (35). The form (35) facilitates application of the Wigner theorem (4) 
to calculate the matrix element of XS within the basis of the ‘uncoupled‘ functions 

Equation (35) facilitatesalso derivation by tensorial algebraof thespin-spin coupling 
and mixed spin-spin coupling and spin-xbit coupling contributions to the spin Ham- 
iltonianconsideredfirst by Rudowicz [25] (cfalso [26]). Asanexample, weconsider here, 

ILMJMS) = ILM,)ISM,). 
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for simplicity, only the second-order perturbation effect of the spin-orbit interaction 
on the ground orbital singlet (denoted by 0 below). Other higher-order perturbation 
contributions are dealt with explicitly elsewhere. Integrating over the orbital variables 
one obtains [24] 

C Rudowicz and Yu Wan-lun 

( 1 1  . whereb. denotesthe matrixeiement (OILln) = Lk with0 and n referringto the ground 
and excited states, respectively, and E, denotes energy. Using (34) we immediately 
obtain the ZFS term in the spin Hamiltonian as 

Xs = 2 B$*JO$hJ(S) (37) 
hrl 

where 

The values of & i 1 , I 1  can be found in table 1. 
Using (36),  the conventional derivation of the spin Hamiltonian 191 yields only the 

form Xs = S .  D .  S .  The conventional derivation is not suitable for derivation of the 
higher-order perturbation contributions as it cannot handle the spin-spin interaction. 
Thus the spin-Hamiltonian derivation by the tensor algebra outlined above provides 
meansoftakingintoaccount fullyanyinteractionexpressedin termsoftensoroperators. 
For instance, the spin-spin interaction (35) produces the second-order contribution to 
the spin-Hamiltonian parameter BY) in (37) given by 

where LE) = (OIO"'(L)ln). Values of E ~ ' ~ ' )  can be found in table 1. The tensor method 
of derivation of the spin Hamiltonian will be used for the consideration of the pseudo- 
quadrupole interaction in NMR spectroscopy [I31 in a future paper. 

6. Conclusions 

Irreducible products of irreducible tensor operators O"J( J )  obeying special com- 
mutation relations arising from the properties of angular momentum operators can be 
expressed in terms of O'k) associated with a coupling coefficient ~p l"? ' .  The symmetry 
properties of this coefficient reveal the equality [O"l) x O(k21](k) = [O(kzJ x O(h~)] (K1 ,  
This result differs from the corresponding result for the coupling of commuting tensor 
operators. Multiple products have also been discussed. An analytical expression has 
been derived for the couplingcoefficient used to tabulate itsvaluesfor several 
important cases. The present considerations reveal several symmetry properties of the 
coupling coefficients for multiple irreducible products of tensorial sets, The numerical 
results are useful in the study of higher-order effects in spectroscopy. 
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